
Version 8 17th August 2023

Background to Modern Cryptography

Cryptography can help to keep your private correspondence private – from state
surveillance, commercial harvesting of personal details, fraudsters seeking
potential victims or just plain nosy parkers. It does this by encrypting readable
plaintext , that you wish to keep secret, into ciphertext gibberish that only the
recipients you choose can decrypt and understand.

It is not new – during Julius Cæsar’s military campaign in ancient Gaul, he used a
simple cipher to keep his plans secret. But it has grown in importance since
Cæsar’s time, due to modern means of communication and increasing security
threats. Mathematical methods and powerful computers have come to the aid of
both code-makers and code-breakers. Once the preserve of governments and the
military, it is now available to businesses and the public.

This paper sets out the basic principles of modern Public Key Cryptography, with
a brief account of how it got here and suggestions of where it may be going. The
companion paper Pros and Cons of Cryptography summarises the benefits, draw-
backs and costs; Implementing Cryptography deals with practical details of choice
of software and management of cryptographic keys; and there is a Glossary.

Components of Cryptography

A typical cryptographic system includes:

1. The cryptography software, normally installed on your computing device
as part of your software distribution, that provides standard algorithms for
general methods such as encryption and decryption;

2. messages (both plaintext and ciphertext) that are the inputs and outputs of
the cryptographic system; and

3. k e ys that are generated at your request and owned by you, and control
encryption and decryption transformation of messages by the general
method algorithms. According to Kerchoffs’ Principle* “The system” (in
which he does not include the keys) “must not be required to be secret, and
it must be able to fall into the hands of an enemy without inconvenience.”
In other words, keys must be kept secret – because your security depends
on them – but all other parts of the system, such as the general methods,
may be open-sourced and can safely be made public.

* Article La Cryptographie Militaire in Journal des Sciences Militaires (1883)

Glossary04.odt#GL-Encrypt
#BG-KeyGen
Glossary04.odt#GL-key
Glossary04.odt#GL-key
Glossary04.odt#GL-Key
Glossary04.odt#GL-method
Glossary04.odt
Implementing_cryptography30.odt
Pros_and_cons_of_cryptography14.odt
Glossary04.odt#GL-Caesar
Glossary04.odt#GL-Decrypt
Glossary04.odt#GL-ciphertext
Glossary04.odt#GL-plaintext
Glossary04.odt#GL-plaintext

BACKGROUND TO MODERN CRYPTOGRAPHY 2

Traditional Cryptography

Historically, cryptographic systems would decrypt a message by using the same
key that had been used for encrypting it, which is known as a symmetric key. Up
until the 1970s, symmetric key cryptography was the only kind available. It is fast
and secure, and may be used on its own or as a component of larger systems.

Present-day symmetric key cryptography uses modern digital methods such as
AES. They provide algorithms that can:

– encrypt plaintext X by using key K; and

– decrypt ciphertext Z by using key K,

where the same key, K, is used for both functions.

Symmetric key cryptography could provide a lightweight cryptosystem to a small
group of users. The keys used by group members would be organised so that:

1. Any member can send an encrypted message to any other member;

2. therefore the sender has to know the keys of the people to whom they want
to send messages; and

3. each member has their own unique receiving key. A member who receives
a message that is not meant for them ought not to decrypt it.

Communication within the group would be secure against outsiders, but not
against insiders unless all members take care of their keys and observe the rules.
Another shortcoming is that the scheme does not provide digital signatures or
signature verification. The risks can be avoided by using public key cryptography.

Public Key Cryptography

The need for privacy of communication, and later for authentication of messages
and of correspondents, expanded beyond the traditional fields of commercial,
intelligence and diplomatic communications. It was boosted by the two World
Wars and later the Cold War against the Soviet Union, that demanded speedy
decoding of enemy signals traffic and security of allied communications. Mathem-
aticians, scientists and engineers made good progress in a series of incremental
developments that culminated in the Public Key Cryptosystem.

Glossary04.odt#GL-AES
Glossary04.odt#GL-SymKey

BACKGROUND TO MODERN CRYPTOGRAPHY 3

Polish mathematicians had cracked the workings of the German electro-mechan-
ical Enigma machine in the 1930s. From 1940 onwards, Turing, Welchman and
others at the Government Code & Cipher School (now the Government Commu-
nications Headquarters, GCHQ) took up the work. Early code-breaking machines
such as the Bombe were superseded by the Colossus, a true electronic computer.

In 1945 Shannon wrote a classified memorandum on the mathematical theory of
cryptography, from a communication theory standpoint, providing a firm mathem-
atical basis for later work such as that of Diffie and Hellman and of Rivest, Shamir
and Adleman. A declassified version was published in 1949¶.

In 1970 Ellis, Cocks and Williamson at GCHQ proposed a public key cryptosys-
tem* that was a forerunner of both RSA and Diffie-Hellman Key Exchange (see
below), but received insufficient support for development of a usable system. The
work was made public in 1997.

Diffie-Hellman: a Public Key Distribution System

In the 1970s Diffie, Hellman and Merkle did a huge amount of pioneering work,
inspired by their vision of a Public Key Cryptosystem. In 1976 they published the
technique known as Diffie-Hellman Key Exchange (also known as Diffie-Hellman
Key Agreement), based on their method of discrete logarithms†. This enables two
parties, with no prior knowledge of one another, to generate the same secret key.

¶ See Shannon Communication theory of secrecy systems (1949)
* See Wikipedia article James Henry Ellis, report The Possibility of Secure Non-secret Digital

Encryption (Jan. 1970) and oration Dr Clifford Cocks CB. (Feb. 2008).
† See Diffie and Hellman New Directions in Cryptography (Nov. 1976). There is also a good

article on Diffie-Hellman key exchange in Wikipedia. The calculation uses whole number
(integer) values in modular arithmetic, where numbers are constrained to be within a range
from zero up to a limit called the modulus. If the result of a computation would fall outside
this range, it is brought back within range by subtracting the modulus from it (or, if negative,
adding the modulus to it) a sufficient number of times.
A value called the base that, like the modulus, has been agreed between the parties before-
hand, is raised to a power, each party choosing their own value for the power and keeping it
secret. The user-selected value is combined with other data so it cannot be unscrambled by an
interloper or by the other party.
The parties swap numbers, so that each now holds a number, the base raised to the power of
the other party’s secret parameter, but from which they cannot retrieve that secret. They also
still know their own secret. They raise the number they received from the other party to their
own secret power, the result is the secret key
Both parties, by doing the mirror image of one another’s calculation, achieve the identical
result. This is because raising the base to the power a then raising the result to the power b
gives the original base, raised to the power ab; the other party, by doing the exponentiations in
the reverse order, raises the original base to power ba; but the two are exactly the same. No
secret information had to be transmitted over a communications link.

https://www.cs.jhu.edu/~rubin/courses/sp03/papers/diffie.hellman.pdf
http://www.bristol.ac.uk/graduation/honorary-degrees/hondeg08/cocks.html
https://web.archive.org/web/20170216051636/https://www.gchq.gov.uk/sites/default/files/document_files/CESG_Research_Report_No_3006_0.pdf
https://web.archive.org/web/20170216051636/https://www.gchq.gov.uk/sites/default/files/document_files/CESG_Research_Report_No_3006_0.pdf
https://ia802703.us.archive.org/2/items/bstj28-4-656/bstj28-4-656.pdf

BACKGROUND TO MODERN CRYPTOGRAPHY 4

It is not a full Public Key Cryptosystem, but it solves the key distribution problem.
It is used as a component, for example in symmetric key cryptography and in the
Signal, ElGamal and Elliptic-curve protocols. Merkle‡ tried a different approach
to a Public Key Cryptosystem but it was not viable on then-current hardware.

RSA: a Working Public Key Cryptosystem

In 1977 Rivest, Shamir and Adleman developed a practical implementation of a
public key cryptosystem known as RSA§. It is now widely used, as a system in its
own right or as a component of other systems such as SPAM detection in e-mail.

An essential element of a Public Key Cryptosystem is the ‘trapdoor one-way
function’. One-way means that it is easy to send an encrypted message, but
infeasible for an eavesdropper to spy on it or tamper with it unless they possess
special trapdoor information – in this case, the intended recipient’s decryption key.
The difficulty of devising such a function# was the rock on which previous
attempts to implement a workable Public Key Cryptosystem had foundered. RSA
provided the solution.

RSA also solved the long-standing problem of authentication. An electronic busi-
ness or financial transaction needs to be backed by evidence of the grantor’s
consent, just like the signature on a written agreement. Now the author of an
electronic document can make a digital signature, unique to themself, that the
world can see is theirs but that an impostor (even the recipient) cannot forge.

Creating and verifying such digital signatures depends on the capability of
decrypting plaintext. This is explained further in criterion (4) of the C riteria for
a Public Key Cryptosystem section.

A digital signature authenticates the document’s content as well as its author’s
identity, showing up any deviation of the content delivered from that which the
sender sent. Signature of the document can be almost instantaneous, avoiding
banking delays and circulation of papers by post or in person.

‡ See Merkle Secure Communications Over Insecure Channels (Apr. 1978)
§ See Rivest, Shamir and Adleman A Method for Obtaining Digital Signatures and Public-Key

Cryptosystems (1977).
In the RSA protocol, the encryption and decryption keys are each the product of two or more

large prime numbers. Multiplying the numbers together is easy for a computer, but for an
attacker to decompose the product into its constituent factors is known to be a very hard
problem, making this a one-way function. See Rivest, Shamir & Adleman (op. cit. section
IX.A.Factoring n).

#BG-rule4
#BG-rule4
#BG-rule4
#BG-rule4
#BG-rule4
#BG-rule4
#BG-rule4
#BG-rule4
#BG-rule4
Glossary04.odt#GL-oneway
https://dl.acm.org/doi/pdf/10.1145/359340.359342
https://dl.acm.org/doi/pdf/10.1145/359340.359342
Glossary04.odt#GL-ECC
Glossary04.odt#GL-ElGamal
Glossary04.odt#GL-Sigproto
https://dl.acm.org/doi/pdf/10.1145/359460.359473

BACKGROUND TO MODERN CRYPTOGRAPHY 5

A digital signature guards against a document signatory later attempting to
repudiate their signature and say “I never signed that!” The proof is in the
signature, signed with their key that no-one else has access to.

A Public Key Cryptosystem also simplifies key management. The user themself
creates and controls their own keys and has an incentive to do it conscientiously.

Anatomy of the Public Key Cryptosystem

The diagram below illustrates a single user’s Public Key Cryptosystem:

Each user’s device is connected to the network, via which they can communicate
with one another. Each contains:

– installed software algorithms for encryption and decryption;

– a message space of plaintext and ciphertext messages that may be subject
to, or the result of, transformations performed by the algorithms – see
criterion (2) below;

– a set of encryption keys and a set of decryption keys in one-to-one
correspondence, such that each key in either set is paired with its partner
in the other through their functions being the exact inverse; and

– unpaired copies of other users’ encryption keys, made publicly available
by their owners.

Glossary04.odt#GL-DecKey
Glossary04.odt#GL-EncKey
#BG-rule2
#BG-rule2
#BG-rule2
#BG-rule2

BACKGROUND TO MODERN CRYPTOGRAPHY 6

Criteria for a Public Key Cryptosystem

To qualify as a Public Key Cryptosystem, the system must satisfy the criteria¶:

1. for every key in the keyspace, there is an encryption procedure† and its
inverse, the corresponding decryption procedure;

2. for every key in the keyspace and message in the message space, the
encryption and decryption procedures are easy to compute;

3. for almost every key in the keyspace, it is infeasible to derive any easily
computed algorithm, equivalent to the decryption procedure, from the
corresponding encryption procedure. A user’s encryption key can be made
public without compromising the security of their secret decryption key
and is therefore called a pu blic k ey ;

4. for every key in the keyspace, it is feasible to compute inverse pairs of
encryption and decryption procedures from the key. If a ciphertext or
plaintext message is first decrypted and then re-encrypted‡, the original
message is the result. This guarantees that there is a feasible way of
computing corresponding pairs of inverse transformations when no
constraint is placed on what either the enciphering or deciphering
transformation is to be.

‘A function satisfying (1) – (3) of the above criteria is a “trap-door one-way
function;” if it also satisfies (4) it is a “trap-door one-way permutation.” … These
functions are called “one-way” because they are easy to compute in one direction
but (apparently) very difficult to compute in the other direction. They are called
“trap-door” functions since the inverse functions are in fact easy to compute once
certain private “trap-door” information is known. A trap-door one-way function
which also satisfies (4) must be a permutation: every message is the ciphertext for
some other message and every ciphertext is itself a permissible message. (The
mapping is “one-to-one” and “onto”). Property (4) is needed only to implement
“signatures”.’ (See Rivest, Shamir and Adleman op. cit.)

¶ Adapted from Diffie and Hellman op. cit. and Rivest, Shamir and Adleman op. cit.
† In this section the combined action of a key and a general method algorithm, working together,

is referred to as a procedure.
‡ It may seem counter-intuitive to decrypt plaintext, but…

(a) We must use the sender’s key to decrypt the signature – it is the only thing that is uniquely
tied to the sender’s identity; and
(b) We can do so because the message space is closed; we can transform the bit-string
constituting the message to a different bit-string but that will still be a valid entry in the
message space. (See introduction to Signing and Verifying Messages)

#BG-signatures
Glossary04.odt#GL-PubKey
Glossary04.odt#GL-PubKey
Glossary04.odt#GL-PubKey
Glossary04.odt#GL-PubKey
Glossary04.odt#GL-procedure

BACKGROUND TO MODERN CRYPTOGRAPHY 7

Operation of the Public Key Cryptosystem

Key Generation

In a Public Key system, each user is solely responsible for generating their own
keys; this avoids the divided responsibility from which symmetric key systems
may suffer. You should create at least one encryption/decryption pair*. You can
create more than one if you wish.

We want to generate keys such that:

– it is easy for any user to send an encrypted message to any other user;

– it is easy for the intended recipient of an encrypted message to decrypt it;

– an attacker cannot derive a decryption key that would enable them to spy
on the recipient’s incoming mail from the recipient’s encryption key; and

– an attacker cannot discover another user’s decryption key by trying out
each of the huge number of possible keys until they find one that works.

Keys are large numbers – usually a few hundred digits each. The keys are
generated by software called a ‘pseudo-random bit generator’, which produces a
stream of numbers that look random but are, in fact, deterministic; so a cunning
attacker might be able to detect a pattern in the sequence and so short-circuit the
trial and error process. To prevent this, it is a good idea to inject some external
randomness into the process. Suggestions include timings of a noisy diode,
radioactive decay or keyboard and mouse events.

Key Distribution

Users should:

– distribute a copy of their encryption key (see criterion (3) above), as
shown in the following diagram, to each correspondent from whom they
wish to receive encrypted messages;

– in return, receive a copy of the encryption key of each correspondent to
whom they intend to send encrypted messages; and

– import those copies of other users’ keys into their own key store.

* For example, by using a utility program such as Kleopatra or Gpa

#BG-rule3

BACKGROUND TO MODERN CRYPTOGRAPHY 8

(see next page for key to symbols)

Background_to_modern_cryptography08_copy.odt#Image1%7Cgraphic

BACKGROUND TO MODERN CRYPTOGRAPHY 9

(intentionally blank)

BACKGROUND TO MODERN CRYPTOGRAPHY 10

Sending an Encrypted Message

Asymmetric key methods provide algorithms that can:

– encrypt plaintext X by using key K ; * and

– decrypt ciphertext Z by using key K´.

When Alice sends an encrypted message to Bob†, she encrypts it using the copy of
Bob’s public key, K, that Bob distributed to her, and sends the resulting ciphertext
to Bob. Anyone can send a message this way. Bob decrypts the ciphertext with his
own decryption key, K ′; because of criterion (3) above, no-one but Bob – not
even Alice – has access to Bob’s decryption key; it is called his pr ivate k ey .

* As an optimisation, a fast one-off symmetric key is used instead of the slower public key
algorithm. It is encrypted using the recipient's public key and sent with the message.

† Alice and Bob are, by convention, names given to the actors in these examples.

Glossary04.odt#GL-PrivKey
Glossary04.odt#GL-PrivKey
Glossary04.odt#GL-PrivKey
Glossary04.odt#GL-PrivKey
#BG-rule3

BACKGROUND TO MODERN CRYPTOGRAPHY 11

Signing and Verifying Messages

As well as encrypting an electronic document to ensure its privacy, the sender can
add a digital signature to authenticate it – just as a handwritten signature
authenticates a hard copy document. For this purpose, public and private keys are
used differently from the encryption case. In a communication from Alice to Bob:

– the digital signature is going to serve as proof that Alice is the true author
of the document – so she alone must be able to create the signature and
does so using her own private key§, to which no-one else has access;

– the signature must be verifiable by any recipient. Bob can use the copy of
Alice’s public key – the inverse of her private key – to re-encrypt and
check the signature, as can anyone else to whom Alice has distributed her
public key; and

– Alice’s decryption of the signature before sending the document, and
Bob’s re-encryption of it after receipt, protect the privacy of the document
during transit. Usually, Alice will have provided additional protection by
encrypting the whole message as described in Sending an Encrypted
Message above.

A fake message will not pass this test. The attacker would need Alice’s private
key, which they do not have, to create a convincing false signature.

Rivest, Shamir & Adleman (op. cit.) envisaged that the sender would decrypt the
whole of the message and use that as the signature. In this case there would be no
need to send the original text as well, as the recipient could obtain it simply by re-
encrypting the signature. An alternative method is to compute a hash of the
document, decrypt just the hash and send that along with the document, which
must now be sent in full as the recipient cannot derive it from the hash. After
decrypting the document as received, the recipient computes a hash of its content,
re-encrypts the hash of the sent content given in the signature, and checks that the
two hashes match.

To support digital signatures and verification, the general methods must provide
the algorithms:

– decrypt plaintext signature X using key K ; and

– verify signature S by re-encrypting it with key K´,

§ taking advantage of criterion (4) above, which allows her to “decrypt” the plaintext signature
with her private key.

Glossary04.odt#GL-Hash
#BG-EncryptSend
#BG-EncryptSend
#BG-rule4
Glossary04.odt#GL-Sig
Glossary04.odt#GL-Sig

BACKGROUND TO MODERN CRYPTOGRAPHY 12

where K is the sender’s private decryption key and K´ is the sender’s public
encryption key.

BACKGROUND TO MODERN CRYPTOGRAPHY 13

The author of a confidential message signs it digitally in their own name, to
identify themself as the originator. This runs the risk of Surreptitious Forwarding.
If the recipient of the message sends it on to someone else, no cryptographic
record is made in the message to show that this forwarding has taken place. If the
onward recipient is a person not entitled to see the message, this could be a
serious breach of security for which the original author may be blamed – as theirs
is the only signature that appears in the message.

A number of ways round this problem† have been suggested.

Adoption of Public Key Cryptography

Public Key Cryptography is used for secure web-sites (where you see a padlock
icon in your browser’s address bar), for code signing and for secure messages. The
public, as well as state institutions, have been able to use it since Phil Zimmer-
mann published the PGP (Pretty Good Privacy) program in the 1990s. After a
run-in with the US Department of Justice, it became generally available.

Secure web-sites caught on rapidly, driven by e-commerce companies’ need for
secure transactions over the world-wide web. Most e-businesses now use them.

Secure messaging by e-mail did not take off as the originators had hoped. Perhaps
people saw no real need for it, or were waiting for others to adopt it first so that
they would have someone else to talk to. Development of cryptography support
for secure e-mail slowed down; it was still based largely on the 1990s versions and
has been criticised, e.g. by Green and Marlinspike‡, for not keeping up-to-date
with changing technology and expectations. Complaints include:

– clumsy key management and does not support forward secrecy;

– lack of automatic key synchronisation across devices, so user has to copy
them manually;

– obscure trust model so authentication is often not done properly;

– difficulty of adding desired features without a total redesign; and

– complex and old-fashioned user interface, requiring either training or
recourse to bulky and unreadable documentation.

† See Davis: Defective Sign & Encrypt in S/MIME, PKCS#7, MOSS, PEM, PGP, and XML.
‡ See, for example, Matthew Green: What’s the Matter with PGP? and Moxie Marlinspike: Blog

>> GPG and Me.

Glossary04.odt#GL-UI
Glossary04.odt#GL-Forward
https://moxie.org/2015/02/24/gpg-and-me.html
https://moxie.org/2015/02/24/gpg-and-me.html
https://blog.cryptographyengineering.com/2014/08/13/whats-matter-with-pgp
http://world.std.com/~dtd/sign_encrypt/sign_encrypt7.html
Glossary04.odt#GL-HidFwd

BACKGROUND TO MODERN CRYPTOGRAPHY 14

Cryptography in the Age of Social Media

A revival of consumer demand came from the world of social media. Users
wanted secure communication, to keep their activities secret from snoopers or
from the police or security services; they wanted it on mobile devices; and they
wanted to use it as an appliance, not needing a high degree of IT skills.

To meet this demand, new cryptographic applications (see Appendix III of the
Implementing Cryptography paper) were developed to make secure
communication easier to use and more modern in style by combining:

– instant messaging etc. over the internet – familiar to Social Media users –
and other features that users want; and

– the Public Key Cryptosystem – as described earlier, but with a modernised
user interface and extended cryptographic support.

Some of these applications provide robust cryptography suitable for serious
business and professional users, for whom high security is a priority; others are
aimed at the recreational market and provide popular add-ons but less emphasis
on security.

Each application comes as part of a proprietary platform; to use it, you sign up for
an account, which lets you communicate with other users of that platform. You
can extend your circle of contacts by opening accounts on several platforms. This
is less open than e-mail, which let you communicate freely with anyone else,
anywhere on the internet, using any e-mail software.

Other possible drawbacks are that instant messaging lacks the quoting and
threading features of e-mail and could make document control more difficult.

Multi-device Support

Many users now own more than one device – for example desktop computer,
laptop computer, tablet computer or mobile phone. They may use them in different
places and at different times – for instance send an enquiry from a desktop
computer at work, receive a reply by mobile phone on the train and send a follow-
up query from a laptop at home. They want this conversation to be as seamless as
if they were conducting it from a single device in a single place.

To do this, each device’s key store must have a copy of your own Private and
Public keys and your correspondents’ Public keys. In early Public Key
Cryptography, you had to propagate them manually from device to device but this
was tricky. The new applications synchronise keys between devices automatically.

Glossary04.odt#GL-platform
Implementing_cryptography30.odt#IC-Appendix3

BACKGROUND TO MODERN CRYPTOGRAPHY 15

Forward Secrecy

Forward Secrecy can protect you against leakage of commercially sensitive,
compromising or embarrassing information, that you probably did not know – or
had forgotten – was on your computer. The biggest risk is often from working
copies of data, that computers make without your knowing as it passes through the
system; tracking down and purging all such copies is next to impossible.

The cryptography software does not attempt to purge this data; instead, it keeps
each item of data encrypted with its own one-off or short-term key. Once the key
has expired, no-one can ever decrypt the data again.

In an online conversation with forward secrecy, the software generates a key for
each successive message. Even if an attacker cracks the key for one message,
previous messages remain secure.

Forward secrecy is not a water-tight guarantee of security. If the sender’s device
has been infected with malicious software that can spy on the information before it
has been encrypted, or the recipient’s device with software that can stash away a
copy of the information after it has been decrypted, the attacker can still obtain a
copy of it; and there is no way to stop the recipient taking a photograph of their
screen while the information is on display.

Cryptographic Support for New Application Features

To support these features, applications need extensions to the basic cryptography
described in the Anatomy of the Public Key Cryptosystem section. You still have
a key, providing decryption and encryption algorithms, but it is created
automatically by the software when you sign up to the platform:

– the private key is secret to you and never leaves the device on which it was
created; and

– the public key has to be available to your contacts on the platform. Your
software publishes it to them via a key store, which may be centralised or
distributed according to the application.

But the new features also require short-term dynamic keys. To implement Forward
Secrecy, for example, you need a key for encrypting each message. This is
implemented in the Signal protocol*.

* See the video presentation at: https://www.youtube.com/watch?v=7WnwSovjYMs. The
software combines the Public Key that authenticates the message with a one-time ‘pre-key’.

https://www.youtube.com/watch?v=7WnwSovjYMs

BACKGROUND TO MODERN CRYPTOGRAPHY 16

In addition, the user interface has been modernised by a method of creating and
managing keys behind the scenes, more in keeping with the social media model
(see Implementing Cryptography section TOFU).

The Future of Cryptography

Cryptography has always been at risk of keys being cracked, so making the
current cryptographic protocols useless. This is a particular concern now because
of the development of powerful Quantum Computers.

The widely used RSA mechanisms could become vulnerable to cracking but this
is impracticable by classical methods. However it is feasible – though difficult and
expensive – using quantum methods, that could be within the reach of large
organisations such as governments. A defence† has been proposed but, while
cheap compared with the attack, it is beyond the reach of normal users.

There is also active research into new communication techniques, that exploit the
quantum characteristics of novel materials and so provide security that would be
very hard for an attacker to defeat.

Conclusions

1. The theory behind the public key architecture is sound. The method is in
wide use and, so far as known, has not yet been cracked. There is a risk
that it may be rendered useless by advances in code-cracking. It is hoped
that cryptographers will continue to keep ahead of the crackers.

2. The social media based applications have a superb solution for multi-
device usage, partly cure the usability difficulties of the older software
(though perhaps creating some new ones) and support forward secrecy.

3. However, users may need to sign up for several different platforms and
install the appropriate software for each, in order to communicate widely
on the internet; and the social media applications do not, at present, cater
for some likely needs of business users – for example, integrated e-mail
support (or perhaps something better).

Richard Stonehouse

† See Bernstein, Heninger, Lou & Valenta: Post-quantum RSA

../Current-version/Background_to_modern_cryptography07.html#BG-noemail
../Current-version/Background_to_modern_cryptography07.html#BG-noemail
../Current-version/Background_to_modern_cryptography07.html#BG-walledgdns
../Current-version/Background_to_modern_cryptography07.html#BG-forward
../Current-version/Background_to_modern_cryptography07.html#BG-multidev
../Current-version/Background_to_modern_cryptography07.html#BG-multidev
https://cr.yp.to/papers/pqrsa-20170419.pdf
Implementing_cryptography30.odt#IC-TOFU

BACKGROUND TO MODERN CRYPTOGRAPHY 17

Appendix – Key Usage in Public Key Cryptography

The Basic Rules

Private and public key work together according to the rules:

1. you do not share your private key with anyone. You may share your public
key, because no-one can derive the associated private key from it; and

2. whichever key was used to encrypt something, it can only be decrypted by
the other key of the same key pair.

Key Usage

The private and public keys of the sender and the recipient are used as shown in
the table below. Decryption, including the special case of decrypting plaintext, can
only be done by the owner of the relevant private (decryption) key. Anyone can
encrypt plaintext by using the relevant public (encryption) key; these keys are
distributed generally. Decrypted plaintext can be re-encrypted using the public key
counterpart of the private key that was used for decrypting it.

Encryption/Decryption Signing/Verification

Sender Side

Message is written by sender and
encrypted by sender using copy of
recipient’s public key.

Plaintext signature is created by
sender and decrypted by sender
using sender’s own private key.

Recipient Side

Message is decrypted by recipient
using recipient’s own private key.

Plaintext signature is re-encrypted by
recipient using copy of sender’s
public key.

